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ABSTRACT 
The flow of a Jeffrey fluid in an inclined elastic tube is investigated. The expressions for velocity and flux flow 

rate are determined. The flux is determined as a function of inlet, outlet, external pressures, non-Newtonian 

Jeffrey parameter and the elastic parameters of the tube. The effects of different parameters on the velocity and 

the flux are discussed. It is observed that the effects of Jeffrey parameter and elastic parameters have strong 

effects on the pumping phenomena. When the Jeffrey parameter and inclination parameter tends to zero, our 

results agree with those of Rubinow and Keller [J. Theor. Biol. 35, 299 (1972)]. Further the increasing elastic 

parameters and inclination parameter increase the flux of the non-Newtonian fluid in the elastic tube 
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I. INTRODUCTION 
There has been a recent interest in the study of biofluid flows through elastic tubes and channels because of their 

important biological and industrial applications. In particular the study of blood flows through an artery plays an 

important role in the fundamental understanding, diagnosis and treatment of many cardiovascular diseases. 

Hence, over the past years many laboratory experiments have been conducted to investigate the properties of 

fluid flow through tubes. Among them Young [1] was the first who pointed out the importance of elasticity for 

pulse wave originating from the heart. Later, the results of Rubinow and Keller [2] exhibit the principle non-

linear features of the pressure-flow relations observed in veins. The first experimental studies on internal flows 

through conduits bounded by soft walls were carried out by Lahav et al. [3] and Krindel & Silberberg [4]. They 

conducted experiments in gel-walled tubes of sub-millimeter diameter and found that the flow rate through the 

tube is smaller than the flow rate expected for a rigid tube for the same pressure difference. Recently 

experimental studies on the flow through soft tubes and channels were done by Kumaran [5]. Mark [6] gave 

simultaneous solution for the Navier-Stokes and elastic membrane equations by a finite element method. 

Womersley [7] studied oscillatory flows in Arteries and gave a constrained elastic tube as a model of arterial flow 

and pulse transmission. Erbay et al. [8] explained finite axisymmetric deformations of elastic tubes with an 

approximate method.  Dalin Tang et al. [9] gave a mathematical model with free moving boundary to study 

viscous flow in axisymmetric collapsible tubes with three kinds of stenosis subjected to prescribed pressure drop 

and uniform external pressure conditions.  

 

Under several investigations in the area of fluid dynamics, the Poiseuille law is consider to be very important as it 

explains the linear relation between the flux and the pressure difference between the ends of the tube in the case 

of viscous incompressible fluid in a rigid tube. However, in the vascular beds of mammals, the pressure flow 

relation is always nonlinear. This non-linearity is due to the elastic nature of the blood vessels. Hence, to analyze 

the effect of elasticity on small blood vessels, a mathematical model was designed by Vajravelu  et al. [10 ] to 

study the flow of Herschel-Bulkley fluid in an elastic tube.  Vajravelu et al. [11]  made an attempt to study the 

peristaltic transport of a Herschel-Bulkley fluid in an inclined tube and Taha Sochi [12] developed a model for 

the Newtonian and Power-law fluids using two pressure-area elastic relations to describe the tube dispensability.  

Sreenadh et al. [13] analyzed the flow of a Casson fluid through an inclined tube of non-uniform cross section 

with multiple steosis. Ravi Kumar et al. [14] studied the unsteady peristaltic pumping in a finite length tube with 

permeable wall.   

     

A non-Newtonian fluid model that has attracted many researchers is the Jeffrey fluid as this is found to be a 

better model for physiological fluids (Vajravelu et al. [17], Hayat et al. [15]). Jeffrey fluid model is a significant 
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generalization of Newtonian fluid model as the later one can be deduced as a special case of the former. Several 

researchers have studied Jeffrey fluid under different conditions.  Sreenadh et al. [16] studied the unsteady flow 

of a Jeffrey fluid in an elastic tube with stenosis. Vajravelu et al. [17] investigated the influence of heat transfer 

on peristaltic transport of a Jeffrey fluid. Jyothi et al. [18] have considered the pulsatile flow of a Jeffrey fluid in 

a circular tube lined internally with porous material. Kothandapani and Srinivas [19] and Pandey et al. [20] have 

considered the peristaltic motion of a Jeffrey fluid under the effect of magnetic field in an asymmetric channel. 

Kavitha et al. [21] investigated peristaltic transport of a Jeffery fluid in contact with a Newtonian fluid in an 

inclined channel. Recently, Sreenadh et al. [22] studied the Effect of elasticity on Hagen-Poiseuille flow of a 

Jeffrey fluid in a tube.  

      

The main objective of the present work is to analyze the effect of elasticity on a non-Newtonian fluid Jeffrey 

fluid flow in an inclined elastic tube. The expressions for velocity and flux flow rate are determined. The 

variations of flux with elastic parameters are discussed.  

 

II. BASIC EQUATIONS 
The constitutive equations for an incompressible Jeffrey fluid are   
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where  T  is the cauchy’s stress tensor,  S  is the extra tensor , I is the identity tensor,  
1  is the ratio of 

relaxation to retardation times, 
2  is the retardation time  is the shear rate and dots over the quantities indicate 

differentiation with respect to time. 

 

III. FORMUATION OF THE PROBLEM 
Consider the Poiseuille flow of a steady laminar incompressible Jeffrey fluid in an elastic tube inclined at an 

angle  with the horizontal, the radius of the tube varies due to the elastic property of the tube and is assumed 

to be  a z . Let L denotes the length of the tube. The blood is modeled as a non-Newtonian Jeffrey fluid and 

the flow is axisymmetric. The axisymmetric geometry facilitates the choice of the cylindrical polar coordinate 

system ),,( zr  , where r and z denotes the radial and axial coordinates and   is the azumuthal angle. The 

momentum equation governing the flow is  
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where  𝜏𝑟𝑧 is the shear stress of the Jeffrey fluid and is given by 
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here u is the axial velocity, p is the pressure and  is the inclination parameter. 

The boundary conditions are 

rz  is finite at 0r                                                                                                           (4) 

0u at   zar                                                                                                               (5)  

                                                                                      

IV. SOLUTION OF THE PROBLEM 
 To solve the equations (2) and (3) under the boundary conditions (4) and (5), we make use of the following 

non-dimensional quantities 
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where 
p
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
, 0a is the radius of the tube in the absence of elasticity, L is the length of the tube, U is the 

average velocity.  The governing equation (after dropping the bars) becomes 
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The non-dimensional boundary conditions are as follows: 

rz  is finite at 0r                                                                                                            (8) 

0u at   zar                                                                                                            (9) 

 

Solving equations (7) subject to the boundary conditions in (8) and (9), we obtain the velocity field as  
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The volume flux Q through any cross section is given by 
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The above equation (11) gives the volume flux for an inclined tube of varying radius ‘a’. Using the fact that the 

variation occurs due to elasticity of the tube wall, we assume the Poiseuille law for Jeffrey fluid flow in an 

inclined elastic tube and discuss the consequences in the next section. 

 

V. THEORETICAL DETERMINATION OF FLUX    
We now calculate theoretically the study flux Q of an incompressible Jeffrey fluid of viscosity  in an inclined 

elastic tube of radius a(z) and length L. We assume that the fluid enters the tube with the pressure 
1p and leaves 

it with lower pressure 
2p  , while the pressure outside the tube is 0p  if z denotes the distance along the tube 

from inlet end, then the pressure p(z) in the fluid at z decreases from p(0)= 
1p  to p(1)= 

2p  as a consequence of 

the pressure difference p(z)- 0p  between the inside and outside of the tube, the tube may expand or contract, 

and hence the shape of  its cross section may deform due to the elastic property of the wall. Therefore the 

conductivity 
1  of the tube at z will depend on the pressure difference. We consider 

1  =
1  (p(z) - 0p  ) as a 

known function of p(z)  - 0p  .This conductivity is assumed to be same as that of a uniform tube having the 

same cross section as that of at z. We assume that the Q is related to the pressure gradient by the relation  
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where                            
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Integrating equation (12) with respect to z from z=0 and using the inlet condition  
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where
0)( pzpp  . This equation determines p (z) implicitly in terms of Q and z. To find Q, we set z=1and 

  21 pp  in equation (14) to obtain 
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In the present case (circular cross section), the radius a is a function of
0pp  , 

 that is,  0ppaa 
 

 

Equation (15) can be written as  
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If the hoop stress or tension T(a) in the tube wall is known as a function of a, then  0ppa   is determined by 

the equilibrium condition 
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Application to flow through an artery is determined by the static pressure –volume relation of 4cm long piece of 

the human external iliac artery, and converted into a tension verses length curve. Using the least squares 

method, Rubinow and Keller [2] gave the following equation: 
5
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By substituting (18) in (17), on simplification we obtain 
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using (19), (16) can be written as  
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On further simplification, we get 
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VI. RESULTS AND DISCUSSIONS 

From equation (20), we have calculated the flux Q as a function of radius of the tube  0a p p  for different 

values of elastic parameters 1t and 2t , inclination of the tube  and Jeffrey parameter 1  for fixed pressure 

difference at outlet end of the tube 2 0 10p p  . The results are shown in the Figures 1 to 4. From Figure 1and 

2, it is observed that the flux increases with increasing elastic parameters 1t  and 2t . In particular the elastic 

parameter 2t  shows more effect on the flux when compared to 1t . In Figure 3, for a Jeffrey fluid in an inclined 

tube, we have noticed that for a given radius  0a p p , the flux Q increases with increasing   for 

4 2

 
  . From Figure 4, it is observed that the flux increases with the increment in the Jeffrey parameter 1

. In order to understand the effect of pressure difference at ends of the tube on the flux, we considered the 

variation of Q verses 1 0p p  for different values of 2 0p p  and variation of Q verses 2 0p p  for different 

values of 1 0p p  in Figures 5 and 6. From Figure 5 it is found that Q increases with the increasing values of 

1 0p p . This phenomena exists due to the constant pressure difference 2 0p p . The opposite behaviour is 

observed in the case of 2 0p p  which is shown in Figure 6. From equation (10), we have calculated the 

velocity u as a function of radius of the tube r for different values of Jeffrey parameter 1  and inclination 

parameter  of the tube for fixed pressure gradient P=8 and pressure difference at inlet end of the tube. The 

results are shown in the Figures 7 to 10. Figures 7 and 8 depict that the velocity increases with the increasing 

values of Jeffrey parameter. The similar behaviour is observed regarding Jeffrey parameter by Vajravelu et al. 

[24] In particular, the flux takes maximum value in figure 8 compared to the figure 7. This is due to the 

increment in the inlet pressure and hence more pressure difference at the inlet end of the tube. From Figures 9 

and 10, it is clear that for a given  , the velocity increases with the increment in r.  
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Figure 1. Variation of flux Q with radius a for different values of the elastic parameter 

1t  

 

 

Figure 2. Variation of flux Q with radius a for different values of the elastic parameter
2t . 
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Figure 3 . Variation of flux Q with radius a for different values of the inclination parameter . 

 

 
Figure 4. Variation of flux Q with radius a for different values of the Jeffrey parameter 
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Figure 5. Variation of flux Q with 

02 pp   for different values of 
01 pp  . 

 

 
Figure 6 Variation of flux Q with 01 pp   for different values of 02 pp  . 
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Figure 7. Velocity profile for different values of Jeffrey parameter 

1  with inlet pressure 25.0,1001  app  

 

 
Figure 8. Velocity profile for different values of Jeffrey Parameter 

1 with outlet pressure 02 pp  =1000, a=0.45. 

http://www.ijesrt.com/


  ISSN: 2277-9655 

[Sumalatha * et al., 7(1): January, 2018]  Impact Factor: 4.116 

IC™ Value: 3.00  CODEN: IJESS7 

http: // www.ijesrt.com© International Journal of Engineering Sciences & Research Technology 

 [159] 

 
Figure 9. Velocity profile for different values of inclination parameter  with inlet pressure 25.0,1001  app  

  

 
Figure 10. Velocity profile for different values of inclination parameter  with outlet pressure 02 pp  =1000, a=0.45. 

VII. CONCLUSIONS 
In this paper, we modeled the effects of elasticity on the Poiseuille flow of steady laminar incompressible 

Jeffrey fluid in an inclined elastic tube. The variation of flux and velocity field are analyzed with respect to 

various physical parameters, namely inclination parameter, Jeffrey parameter, elastic parameters, inlet and outlet 

pressures. We find some interesting facts: 

1. The flux increases when there is an increase in elastic parameters. 

2. The flux increases with the increase in inclination parameter. 

3. The flux increases with the increasing values of Jeffrey parameter. 

4. The inlet and outlet pressures have opposite behavior on the flux and 

5. The velocity increases with the increasing values of Jeffrey and inclination parameters respectively 
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